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Abstract: The data acquisition process is occasionally the most time consuming and costly
operation in tomography. Currently, raster scanning is still the common practice in making
sequential measurements in most tomography scanners. Raster scanning is known to be slow
and such scanners usually cannot catch up with the speed of changes when imaging dynamically
evolving objects. In this research, we studied the possibility of using estimation theory and our
prior knowledge about the sample under test to reduce the number of measurements required to
achieve a given image quality. This systematic approach for optimization of the data acquisition
process also provides a vision toward improving the geometry of the scanner and reducing the
effect of noise, including the common state-dependent noise of detectors. The theory is developed
in the article and simulations are provided to better display discussed concepts.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Tomography scanners are used in a wide range of non-destructive testing applications. Despite
some differences, most scanners are made based on the same architecture in which an object
is placed between an array of sources and detectors, Fig. 1. In each test, one or a combination
of sources are powered to radiate some form of energy, e.g., optical, electromagnetic, acoustic,
thermal, etc., into the medium under test. The radiated energy interacts with the medium as
it propagates from sources to detectors, where the intensity and sometimes phase of the field
are measured. Scanners collect a set of these measurements and solve an inverse problem
to reconstruct three-dimensional images that reveal information about the structure or certain
properties of the medium.

The most common scanning protocol in today’s optical tomography is raster scanning. In
raster scanning, for each measurement, only one source is illuminating power while all detectors
are recording. The scanner makes all measurements before using the acquired data to reconstruct
the image. Raster scanning is time-consuming and such scanners are occasionally not fast enough
to catch up with the speed of changes when imaging dynamically evolving objects [1]. To
expedite the process of data acquisition, we need to reduce the number of measurements but
make each measurement as informative as possible. By choosing appropriate geometry for the
scanner, including the locations of sources/detectors, and engineering the illumination pattern
in each measurement, we can improve the rate of data acquisition and reconstruct images with
satisfactory quality from a smaller number of measurements. This will also reduce the cost of
operation.

Previous work in the field can be divided to two main categories. The first category includes
algorithms that are designed based on concepts of signal processing which assumes system
identification can be expedited if we measure the response of an unknown system to complex
inputs instead of measuring a set of impulse responses such as raster scanning. Different
illumination patterns were tested for this purpose, including checkerboard [2], sinusoidal [3],
wavelet [4], or diffractive optics patterns [5]. Based on published literature, these methods provide
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Fig. 1. Schematic of a typical scanner. The medium under test is placed between an array
of S sources and D detectors and the medium is divided to V number of voxels. The energy
from source j at r̄sj propagates to all voxels including voxel k at r̄vk . The energy is scattered
by the medium and then detected by all detectors including detector i at r̄di .

only marginal improvements. In a separate approach, different scanner geometry or illumination
patterns were tested to enhance the information content of the weight matrix which appears in
the formulation of the problem as discussed later [1,6–9]. For instance, in one study, illumination
patterns were optimized by improving the conditioning of the Fisher Matrix to maximize the rank
of the weight matrix [10]. For sensor position optimization, a two-step algorithm was proposed
in [11]. In this algorithm, first, the deviation between theoretical estimation and the result of an
actual measurement is minimized for a given sensors’ position, and the image is reconstructed.
Then, a second cost function, which describes the quality of reconstructed image, is optimized to
find the optimal sensors’ position for the next round of measurements. Similar approach was also
used to extract optimal illumination patterns for diffuse optical tomography [12].

This second category of algorithms is proven to be more effective; however, what is missing in
previous algorithms is the main asset we have for optimization of data acquisition routines which
is our prior information about the object. In fact, many research groups have already utilized
prior information to alleviate the ill-posedness of the inverse problem in optical tomography by
means of regularization techniques [13–16]. Since Kalman Filter is a powerful tool for employing
prior information to solve inverse problems, we came to the idea of viewing this problem as
an estimation theory problem. However, in this study, we intend to take advantage of the prior
information not only to attenuate ill-posedness of the problem, but also for the optimization of
data acquisition process which leads to improved image quality as well. Prior information can
be acquired from various sources such as our knowledge about the sample under test, results
of initial measurements, data from other imaging modalities, or previously acquired images in
our database. Consider the example shown in Fig. 2. In the study of the brain circuitry, we
occasionally need to evaluate the success of the gene delivery process. For this purpose, we
co-express some form of fluorescence protein to label genetically modified cells. After a short
period following the injection of virus, which acts as the vehicle for gene delivery, target brain
cells produce the fluorescence protein. The concentration of the fluorescence protein in the area
is used to quantitatively determine the success rate of gene delivery. Since the coordination,
amount, and timing of the injection are all known variables, we have a good estimation of the
spread and volume of the transfected area before making any measurement.

In this article, we consider the discretized sample as a state vector and the covariance matrix
quantifies our uncertainty about the concentration and the spatial spread of the target in the
sample. We then introduce an optimization method in which the scanner identifies projections
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Fig. 2. Expression of green florescence protein (GFP) following the procedure for viral
gene delivery. Controlled amount of the solution that contains the virus was injected in the
cortical area about 500 micron inside the tissue. The solution diffused into the tissue and
the virus delivered the genetic construct to the cells which led to the expression of GFP in
excitatory neurons. The volume and position of injection can provide a good estimation of
the distribution of fluorescence proteins after a given period of time post injection. This
information can be used to find the initial estimation prior to any fluorescence tomography
test.

of the state vector for which we have maximum uncertainty. Next, the system synthesizes
illumination patterns to specifically make measurements along those projections. This statistical
approach incorporates the effect of measurement noise and other sources of uncertainties (such
as uncertainties in model predictions or state-dependent noise) that influence the performance of
the scanner.

2. Mathematical framework

In this article, we study image reconstruction as a state estimation problem with two main
ingredients; the first is the forward problem, defining how observations are related to estimation
variables, and the second is the mathematical layout which explicitly explains how estimations
are updated based on the forward model prediction and partial observations.

2.1. Forward model

The architecture of a typical scanner is shown in Fig. 1. Most tomography systems have
well-defined geometries, e.g., a cylinder or sphere. Nonetheless, flexible scanners are also made
to conform to the arbitrary shape of any object under test. In all forms of tomography, we need to
radiate energy into the medium to remotely explore its structure. Wave propagation in physics is
modeled by Helmholtz partial differential equation, which in the scalar case, takes the following
form:

∇2ϕ(r̄) + κ2ϕ(r̄) = −η(r̄)ϕ(r̄). (1)

In this equation, r̄ is the position vector, ϕ represents the field intensity, and κ is the wave
number which incorporates the effect of the medium on wave propagation. In general, κ is a
complex number. When κ is purely imaginary, wave propagation transforms to diffusion. The
function η(r̄) is the scattering potential and finding this function is the main objective of every
tomography problem. This equation is usually solved by decomposing the field intensity to the
incident, ϕi(r̄), and scattered fields, ϕs(r̄), so that: ϕ(r̄) = ϕi(r̄) + ϕs(r̄).

∇2ϕi(r̄) + κ2ϕi(r̄) = 0,

∇2ϕs(r̄) + κ2ϕs(r̄) = −η(r̄)ϕ(r̄).
(2)
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The first equation formulates the intrinsic response of the system in the form of an eigenvalue
problem. Information about the medium is embedded in the second equation. If we transform
the second equation to its dual integral form, we can compute the intensity of the scattered field
at the location of the ith detector, r̄di :

ϕs(r̄di ) =

∫
d3r̄G2(r̄di ; r̄)ϕ(r̄)η(r̄), ∀i ∈ {1, . . . , D}. (3)

In this equation, the integral is taken over the entire volume of the medium. The function,
G2(r̄di ; r̄) is the Green’s function which models the propagation of the field, after interacting with
the medium, from the position r̄ in the medium, to the position of the ith detector. Within the
first Born approximation regime, the scattered field can be computed from:

ϕs(r̄di ) ≃

∫
d3r̄G2(r̄di ; r̄)ϕi(r̄)η(r̄). (4)

If we assume that all sources are discrete point sources, then:

ϕi(r̄) =
S∑︂

j=1
IjG1(r̄; r̄sj ). (5)

The variable Ij is the intensity of the field, illuminated by the jth source. In practice, for any
source, we have upper and lower limits for illumination intensities or Imin ≤ Ij ≤ Imax for all
j ∈ {1, 2, . . . , S}. G1(r̄; r̄sj ) is the Green’s function which models the propagation of the field
from the location of jth source, r̄sj , to position r̄ in the medium. By combining the last two
equations, we arrive at:

ϕs(r̄di ) ≃

S∑︂
j=1

Ij

∫
d3r̄G2(r̄di ; r̄)G1(r̄; r̄sj )η(r̄). (6)

In general, G1 and G2 are potentially different functions. For instance, in fluorescence
tomography G1 and G2 model the propagation of excitation and emission fields, respectively.
Since the absorption and scattering coefficients, which appear as parameters in the formulation
of these Green’s functions, are wavelength-dependent, these two Green’s functions are slightly
different in this problem. Also, in fluorescence tomography, the function η(r̄) represents the
spatial distribution of fluorescent molecules in the medium. To solve this wave propagation
problem, we also need boundary conditions. Nonetheless, different boundary conditions only
change the form of Green’s functions and the main formulation remains untouched. When the
volume is discretized to a set of V voxels (i.e., volumetric pixels), and dimensions of voxels are
small relative to the geometry of the scanner, we can use the following approximation for η:

η(r̄) =
V∑︂

k=1
ηkδ(r̄ − r̄vk ). (7)

Here, it is assumed that all the scattering potential of a voxel is concentrated at the center of
the voxel. r̄vk is the vector that points to the center of the kth voxel which has the total scattering
potential of ηk. For this case:

ϕs(r̄di ) ≃

S∑︂
j=1

V∑︂
k=1

IjG2(r̄di ; r̄vk )G1(r̄vk ; r̄sj )ηk. (8)
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In the discrete space, the scattering problem is then formulated by:

ϕ̄s =
¯̄Wη̄ + ε̄, (9)

In our notation, ¯̄(.) is a matrix, and ¯(.) and ¯(.)T are column and row vectors, respectively. Here,
η̄ = [η1, . . . , ηV ]T , Ī = [I1, . . . , IS]

T , ϕ̄s =
[︁
ϕs(r̄d1 ), . . . , ϕs(r̄dD )

]︁T , and ¯̄WD×V is:

¯̄WD×V =
¯̄G2 · diag( ¯̄G1 · Ī),

¯̄G2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
G11

2 G12
2 · · · G1V

2
... .

. . .
...

GD1
2 GD2

2 · · · GDV
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦D×V

,

¯̄G1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
G11

1 G12
1 · · · G1S

1
... .

. . .
...

GV1
1 GV2

1 · · · GVS
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦V×S

,

Gik
2 = G2(r̄di ; r̄vk ), Gkj

1 = G1(r̄vk ; r̄sj )

(10)

For a given source, detector, and voxel coordinations both G1(r̄vk ; r̄sj ) and G2(r̄di ; r̄vk ) are
constant positive coefficients. η̄ is the estimation vector, and Ī is the illumination pattern. The
last term in Eq. (9), ε̄ ∼ N(0, ¯̄R), is the measurement noise which has Gaussian distribution and
it is added to make the model realistic.

2.2. State estimation

Prior to scanning, we have an initial estimation of the distribution we aim to reveal. By
using that estimation and the forward model of Eq. (9), we can predict the outcome of any
measurement. Each time a measurement is made, we can update our estimation by combining
the model prediction and result of the noisy measurement. This procedure is well aligned with
the function of Kalman filter which combines theoretical predictions with noise contaminated
partial observations to compute the updated minimum-variance estimation. Obviously, optimal
performance is achieved when measurements are designed to provide maximum information
about the distribution at each and every measurement. Therefore, the optimal measurement is the
one that minimizes the uncertainty, or variance, of estimation variables. Finding the optimal
measurement is the first part of each iteration. Once the measurement is made, we can use
Kalman theory to update the state of our estimation, before making the next measurement.

Suppose that η̂n |n−1 and η̂n |n represent our prior and posterior estimations of the vector η̄ at the
time of nth measurement. Uncertainties in the prior and posterior estimations are modeled by
covariance matrices: ¯̄Pn |n−1 = Cov

(︁
η̂n |n−1)︁ and ¯̄Pn |n = Cov

(︁
η̂n |n)︁ , respectively. Following the

theory of Kalman filter, the posterior estimation is computed from the prior via the following
iterative equation:

η̂n |n = η̂n |n−1 + ¯̄Kn
[︂
ϕ̄n

s −
¯̄Wnη̂n |n−1

]︂
. (11)

Here, ¯̄Kn is the Kalman gain which is the weight given to the difference between the prediction
and the actual observation. A larger gain places more weight on the latest measurement, while a
smaller gain mostly ignores the last measurement and relies instead on the prediction derived
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from the previous state. We also need to compute the uncertainty of the updated estimation:

¯̄P(n |n) =
[︂

¯̄U − ¯̄Kn ¯̄Wn
]︂

¯̄P(n |n−1)
[︂

¯̄U − ¯̄Kn ¯̄Wn
]︂T
+ ¯̄Kn ¯̄R( ¯̄Kn)T . (12)

In this equation, ¯̄U is the identity matrix. The main objective of the design is to find the
measurement which leads to a posterior estimate η̂n |n that is as certain as possible. We use the
trace of the covariance matrix as a measure of estimation uncertainty left in the estimation.

Tr[ ¯̄Pn |n] = Tr[ ¯̄Pn |n−1] − 2Tr
[︂

¯̄Kn ¯̄Wn ¯̄Pn |n−1
]︂
+ Tr

[︂
¯̄Kn

{︂
¯̄Wn ¯̄Pn |n−1( ¯̄Wn)T + ¯̄R

}︂
( ¯̄Kn)T

]︂
. (13)

Trace of the covariance matrix is the norm which should be minimized by choosing the best
measurement via designing the optimal illumination pattern.

3. Proposed methodology

As shown in Eq. (13), Tr[ ¯̄Pn |n] is a function of the Kalman gain and illumination pattern embedded
in the weight matrix, ¯̄Wn. Therefore, to minimize the trace, we need to find the optimal weight
matrix and Kalman gain. To better explain this approach, we first study a scanner with only
one detector. After this discussion, we expand the theory to the general case of scanners with
multiple detectors.

3.1. Optimal illumination pattern

In the single-detector case, Kalman gain is a column vector and the measurement noise is a scalar
ε ∼ N(0,σ2). Therefore, Eq. (13) can be simplified to:

Tr[ ¯̄Pn |n] = Tr[ ¯̄Pn |n−1] − 2W̄n ¯̄Pn |n−1K̄n +
[︂
W̄n ¯̄Pn |n−1(W̄n)T + σ2

]︂
(K̄n)T K̄n. (14)

To minimize this trace, we first assume that W̄n is constant and we minimize Tr( ¯̄Pn |n) by
choosing the best value for Kalman gain. In order to find the optimal Kalman gain, we need to
solve the equation ∇K̄nTr[ ¯̄Pn |n] = 0 (∇ā(b): gradient of b w.r.t. ā). Solving this equation gives:

K̄∗n =
[︂
W̄n ¯̄Pn |n−1(W̄n)T + σ2

]︂−1 ¯̄Pn |n−1(W̄n)T . (15)

Now, given the optimal Kalman gain, we take the derivative of (14) with respect to W̄n and set
it equal to zero to find the optimal weight matrix. Since our ultimate goal here is finding the
optimal illumination pattern, it is better if we reformulate the problem to directly search for the
optimal illumination pattern, Ī(n).

Ī∗n = argminĪn
1
2
(Īn)T ¯̄An |n−1 Īn + b̄T Īn,

s.t.Imin
j ≤ Ij ≤ Imax

j , ∀j.
¯̄An |n−1 = (K̄n)T K̄n ¯̄GT ¯̄Pn |n−1 ¯̄G,

b̄ = − ¯̄GT ¯̄Pn |n−1K̄n.

(16)

Here, ¯̄G is a V × S matrix that transforms the source illumination vector Īn to the weight matrix
W̄n = ( ¯̄Gn.Īn)T .

¯̄G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
G11

2 G11
1 · · · G11

2 G1S
1

...
. . .

...

G1V
2 GV1

1 · · · G1V
2 GVS

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (17)
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The optimization problem of (16) is a Quadratic Programming (QP) problem with inequality
constraints, which is convex with a single (global) minimum. Thus, to find the minimum of (14),
we can break the optimization into a two-step process. In the first step, we assume W̄n is constant,
and we minimize Tr[ ¯̄Pn |n] by choosing the best Kalman gain. Next, we adopt the computed gain,
and we optimize the cost function with respect to W̄n. We repeat these two steps till convergence,
see Algorithm 1. Once convergence is achieved, we upload the computed optimal illumination
pattern on the scanner to make the measurement. The result of the measurement is then used to
update our estimation of η̄ and its covariance matrix.

Algorithm 1 Illumination Pattern Optimization
1: initialize ¯̄P1 |0, η̂1 |0 based on prior information;
2: while (certainty < desired level) do
3: set initial Īn;
4: while true do
5: W̄n = ¯̄Gn.Īn;
6: K̄n = (W̄n ¯̄Pn |n−1(W̄n)T + σ2)−1 ¯̄Pn |n−1(W̄n)T ;
7: find Īn using (16) and a QP solver;
8: check stopping criterion;
9: end

10: update η̂n |n using (11);
11: update ¯̄Pn |n using (12);
12: end

3.2. Optimal illumination distribution

Source location optimization is another determining factor that plays a role in the performance
of the scanner. In section 3.1 we assumed that the number of sources is fixed and only their
intensities could change. In that case, the optimal source intensities were referred to as the
optimal illumination pattern. In this section, we expand that method by making the number of
powered sources also an optimization variable.

We first assume that we have N possible locations for sources to be placed. To limit the
number of illuminating sources, it is reasonable to have a minimum of m and a maximum of M
illuminating points among the given N locations. This implies that during each measurement, the
source vector Īn is an N-dimensional column vector with L nonzero entries where m ≤ L ≤ M.
Therefore, in this approach, the intensity and location of sources are optimized for a given number
of sources and we refer to this as the optimal illumination distribution. To solve this optimization
problem, we adopt an integer programming approach. We define an N-dimensional indicator
vector v̄ with binary elements such that vj = 0 when Ij = 0 and vj = 1 when Ij>0. Next, we
impose the following linear constraint to the optimization problem:

vjImin
j ≤ Ij ≤ vjImax

j (18)

This constraint enforce Ij and vj to be zero simultaneously or Imin
j ≤ Ij ≤ Imax

j if Ij>0. To
enforce the limits on the number of illuminating sources, we add another constraint:

m ≤
∑︂

j
vj ≤ M (19)
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Therefore, the optimization problem for finding the optimal illumination distribution takes the
following form:

Ī∗n = argminĪn
1
2
(Īn)T ¯̄An |n−1 Īn + b̄T Īn,

s.t. vjImin
j ≤ Ij ≤ vjImax

j ,

m ≤
∑︂

j
vj ≤ M.

(20)

This is a mixed integer quadratic programming problem which is convex and has a unique
optimal solution [17].

3.3. Resolution

In general, three factors determine the resolution [18]. The first factor is the transport scattering
distance in medium (tissue) which sets a fundamental limit on the spatial resolution. The second
factor is the device geometry including the number of sources and detectors. Singular-value
analysis has shown that an ideal number of sources-detectors with appropriate distribution,
minimizes the linear dependency of the measurements, thereby improving the weight matrix’s
conditioning and resolution of scanner [6,8,19–21]. The third factor is the prior information,
which has a profound impact on resolution [15,22]. For instance, in optical tomography, ϕ̄s
in Eq. (9) is occasionally measured only from the imaging surface. The dimension of the
measured data on the imaging surface is almost always much less than the number of internal
nodes in the medium. Therefore, solving the inverse problem for Eq. (9) is ill-posed and
hypersensitive to noise. A small signal disturbance may lead to a large reconstruction error which
degrades the resolution. Regularization is the common method for handling ill-conditioning
of inverse problems [23–27]. In our statistical framework, regularization can be interpreted as
an explicit form of incorporating prior information in the formulation of the problem. Adding
prior information can induce estimation bias in the same way regularization would do. The
statistical reinterpretation of regularization and the introduced bias have not been fully explored
yet [28]. However, in a conceptual manner, regularization methods truncate data in directions
where corresponding singular values are negligible. Prior information also suggests that we have
little uncertainty in some directions and no measurements is required along such directions. This
omission in both procedures could result in a bias in the reconstructed image. In other words, the
quality of prior information has a profound impact on desired final bias.

Here, we define resolution as the maximum number of voxels that can be revealed at a given
certainty when the scanner performs at its best capability. For a fixed number of sources and
detectors, the number of discernible measurements is fixed. By increasing the number of voxels
that span the space, we increase the number of variables. For a fixed number of measurements,
increasing the number of variables reduces the best achievable certainty. A desired certainty is
achieved if the number of voxels is less than an upper limit which defines resolution of a scanner.

To measure resolution, we assume that we perform raster scanning which covers all possible
measurements. What we measure in the jth measurement, j ∈ {1, . . . , S}, is:

ϕj = W̄ jη̄ + ε,

W̄ j = ( ¯̄G · Īj)T ,

Īj = [0, 0, . . . , 1, . . . , 0]T , ε ∼ N(0,σ2),

(21)

where only the jth element of Īj is 1. We can combine all these measurements in one
equation ϕ̄B = ¯̄WBη̄+ ε̄B so that ϕ̄B = [ϕ1, ϕ2, . . . , ϕS]T , ¯̄WB = [(W̄1)

T , (W̄2)
T , . . . , (W̄S)

T
]T , and

¯̄RB = diag[σ2,σ2, . . . ,σ2]. For this case, we have the prior covariance matrix ¯̄P1 |0. From the
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Kalman filter theory, we know that:

( ¯̄Pn |n)−1 = ( ¯̄Pn |n−1)−1 + ¯̄WT ¯̄R−1 ¯̄W. (22)

Therefore, in our case, we have only one update which is:

¯̄P1 |1 =
[︂
( ¯̄P1 |0)−1 + ( ¯̄WB)T ( ¯̄RB)−1 ¯̄WB

]︂−1
. (23)

We can use Eq. (23) to determine the resolution of a scanner for a given prior covariance matrix
and noise statistics. Equation (23) shows how our method incorporates both the scanner design
and prior information as two resolution enhancing factors. The scanner geometry is embedded in
the weight matrix ¯̄W which is optimized based on the method described in section 3.2, and the
prior information is revealed in the form of the covariance matrix ¯̄Pn |n−1.

3.4. State-dependent noise

To this point, we assumed that measurements are contaminated only by Gaussian noise which
is state-independent. In reality, the variance of noise in detectors changes as a function of
signal amplitude. An example of this effect is the multiplicative noise of photodetectors which
implies that noise power increases by the intensity of exposure [29]. In such systems, the
additive measurement noise should be modeled by the superposition of state-dependent noise
and state-independent Gaussian noise. To add state-dependent noise to the model, we modify the
measurement equation as follows:

ϕn = W̄n(η̄ + ε̄n
1) + ε

n
0 , (24)

where ε0 ∼ N(0,σ2
0 ) is the Gaussian and ε̄1 is the zero-mean state-dependent noise which is

linearly coupled to the state vector η̄ such that:

ε̄n
1 =

∑︂
i

¯̄Ciη̄µ
n
i . (25)

Here, µi ∼ N(0,σ2
1 ) and ¯̄Ci is a diagonal matrix with only one nonzero element:

¯̄C1 = c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 0
...

. . .

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ¯̄C2 = c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 1
...

. . .

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

The coefficient c ∈ R is the state-dependent noise gain (SDNG). On trial n , we have a
prior estimation η̂n |n−1, with uncertainty ¯̄P(n |n−1), and we make an observation ϕn to update the
estimation:

η̂n |n = η̂n |n−1 + K̄n(W̄nη̄ + εn
0 + W̄n

∑︂
i

¯̄Ciη̄µ
n
i − W̄nη̂n |n−1). (27)

The covariance of our posterior estimation is:

¯̄Pn |n = ( ¯̄U − K̄nW̄n) ¯̄Pn |n−1( ¯̄U − K̄nW̄n)T

+ K̄n

[︄
σ2

0 + σ
2
1

∑︂
i

W̄n ¯̄Ciη̄η̄
T ¯̄Ci(W̄n)T

]︄
(K̄n)T .

(28)

This equation states that the uncertainty now depends on η̄ which is the state-vector. Setting
the derivative of the trace of covariance matrix in (28), with respect to K(n), equal to zero results
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in:

K̄∗n = ¯̄Pn |n−1(W̄n)T ×

[︄
W̄n ¯̄Pn |n−1(W̄n)T + σ2

0 + σ
2
1

∑︂
i

W̄n ¯̄Ciη̄η̄
T ¯̄Ci(W̄n)T

]︄−1

. (29)

To find the optimal illumination pattern for the system that suffers from state-dependent noise,
we take the same approach described in section 3.1. Given the fact that W̄n = ( ¯̄G.Īn)T , we can
write this optimization problem for the single-detector scanner as:

Ī∗n = argminĪn
1
2
(Īn)T ¯̄An |n−1 Īn + b̄T Īn,

s.t. Imin
j ≤ Ij ≤ Imax

j , ∀j,
¯̄An |n−1 = (K̄n)T K̄n ¯̄GT ( ¯̄Pn |n−1 + σ2

1

∑︂
i

¯̄Ciη̄η̄
T ¯̄Ci)

¯̄G,

b̄ = − ¯̄GT ¯̄Pn |n−1K̄n.

(30)

In practice, we replace the term η̄η̄T in Eqs. (29) and (30) with the estimated matrix η̂η̂T .
Notice that due to the addition of state-dependent noise, the optimal Kalman gain, K̄∗n, and
optimal illumination pattern, Ī∗n, depend on the current state of η̄ which is not the case when the
noise is state-independent. For a time-invariant system, in the absence of state-dependent noise,
one can compute all optimal patterns in advance if there exists reliable prior information. This
method speeds up the data acquisition time since no online processing of the acquired data or
updating of the state-vector η̂ is necessary. This is one of the main advantages of the proposed
method which has never been studied before, to the best of our knowledge.

3.5. Multi-detector scanner

In previous sections, we discussed the problem of a single-detector scanner. In this section, we
expand the problem to the general case of multi-detector scanners. Once again, we use the trace
of covariance matrix, Eq. (12), as a measure of uncertainty to be minimized. Similar to the
previous approach, we start the optimization by assuming that the weight matrix, ¯̄Wn, is constant
and we minimize Tr( ¯̄Pn |n) with respect to Kalman gain.

¯̄K∗n = ¯̄Pn |n−1( ¯̄Wn)T
[︂

¯̄Wn ¯̄Pn |n−1( ¯̄Wn)T + ¯̄R
]︂−1

. (31)

Finding the optimal illumination pattern in a multi-detector scanner is more complicated and
results in the following form:

Ī∗n = arg min
Īn

−2Tr
[︂

¯̄Kn ¯̄W (n) ¯̄Pn |n−1
]︂
+ Tr

[︂
( ¯̄Kn ¯̄Wn) ¯̄Pn |n−1( ¯̄Kn ¯̄Wn)T

]︂
,

s.t. Imin
j ≤ Ij ≤ Imax

j , ∀j.
(32)

where:
¯̄Wn = ¯̄G2 · diag( ¯̄G1 · Īn). (33)

This is not a convex problem, and we do not have a routine procedure to find the global
optimum. Nonetheless, since the objective function in Eq. (32) is differentiable with respect to
Ī(n), it is reasonable to adopt a variation of the gradient descent method which can also handle
the inequality constraint. Fortunately, the method of Projected Gradient Descent (PGD) perfectly
tailors to this constrained optimization problem. Starting from an initial point Ī0, the gradient
descent algorithm iterates the following equation and continues until a stop condition is met:

Īq+1 = Īq − αq∇ĪqTr( ¯̄Pn |n−1). (34)

The parameter αq is the step size, and q is the iteration counter. Stop-condition is met when
∥ Īq+1 − Īq∥ ≤ δ where δ is the error threshold. In our simulation experiments we considered
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δ = 0.01. Because of the constraint on the optimization problem, a projection step is added to
the gradient descent algorithm:

Īq+1 = Pr

[︂
Īq − αq∇ĪqTr( ¯̄Pn |n−1)

]︂
, (35)

where Pr(.) is the projection operator, see algorithm 2).

Algorithm 2 Projected Gradient Descent (PGD)
1: Pick an initial vector Ī0;
2: while stop condition is not met do
3: Pick the descent direction as −∇ĪqTr( ¯̄Pn |n−1);
4: Pick a step size αq;
5: Update: Īq+1 = Īq − αq∇ĪqTr( ¯̄Pn |n−1);
6: Projection: Īq+1 = min

[︁
max(Īq+1, Īmin), Īmax

]︁
;

7: end

Once the solution to problem (32) is found, we use Eq. (33) to calculate the optimal weight
matrix, ¯̄W∗n. Then, we assume ¯̄Wn is constant to compute the optimal Kalman gain using Eq. (31).
We continue till convergence.

4. Results and discussion

Simulations were conducted to demonstrate the performance of algorithms discussed earlier in
the article. To better display the concepts, most presented simulations here are in low dimensions;
however, without loss of generality, one can expand the same simulations to higher dimensions.
In these simulations, we modeled two (2D) or three-dimensional (3D) scanners and we assumed
κ is purely imaginary. Imaginary κ means wave propagation is in evanescent mode which is
similar to diffusion. Medium was modeled by the diffusion, D, and absorption, µa, coefficients.
We used the following Green’s functions, for 2D and 3D scanners for both G1 and G2 [15]:

G2D(r̄; r̄′) =

√︄
2δ

π |r̄ − r̄′ |
exp(− |r̄−r̄′ |

δ )

2πµaδ2
,

G3D(r̄; r̄′) =
1

4πµaδ2

exp(− |r̄−r̄′ |
δ )

|r̄ − r̄′ |
.

(36)

Here, δ =
√︁

D/µa. We started our simulations by modeling a 2D single-detector scanner shown
in Fig. 3. The scanner has circular geometry with 20 sources distributed uniformly around the
circle. The area within the circle was discretized to 31 triangular pixels. We considered this small
number of pixels to demonstrate concepts only. In reality, sampling of the medium should be done
at much higher rates to achieve the required accuracy. Scattering potentials of these pixels are
unknown variables for which we have prior estimation of their mean values and the corresponding
covariance matrix. We simulated 20 rounds of optimal measurements/updates. The trace of the
covariance matrix was computed after each update and normalized by the initial trace value to
compute the Relative Residual Uncertainty (RRU). Curves in Fig. 3 show the evolution of RRU
values when the scanner was following the optimal illumination pattern algorithm as well as the
conventional raster scanning. This data proves that the optimal illumination approach, compared
to raster scanning, expedites the scanning process and generates more accurate images while
taking a smaller number of measurements.

This improvement in scanning performance can be justified intuitively as well. Consider a
special case where we have no constraint on source intensities while solving the single-detector
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Fig. 3. Structure of a 2D circular single-detector scanner and the comparison between
computed RRU values for optimal illumination and raster scanning. Following optimal
illumination algorithm, one can reconstruct images with superior certainty while taking a
smaller number of measurements.

optimization problem. In this case, the equation ∇W̄(n)Tr( ¯̄Pn |n) = 0 has a closed-form solution for
the optimal weight matrix:

W̄∗n =
[︁
(K̄n)T K̄n]︁−1

(K̄n)T = (K̄n)†. (37)

If we replace this weight matrix in Eq. (15) to compute the Kalman gain, we get ¯̄Pn |n−1K̄n = λK̄n

where λ is a real number. In other words, in each round of measurements if we follow this
optimized scanning algorithm, K̄n and W̄n are both eigenvectors of the prior covariance matrix.
This result matches the theory of principal components in which maximum uncertainty occurs
along eigenvectors of the covariance matrix. By choosing W̄ = (K̄n)† in each round, we measure
the projection of the state vector, η̄, along one of its major principal components. As a result, each
measurement leads to maximum possible drop in RRU values. In reality, practical constraints
on source intensities and scanner geometry make the synthesis of such optimal measurement
vectors infeasible. However, when constraints are added to the problem, the proposed method
generates illumination patterns that are as close as possible to principle components to help the
scanner acquire the most informative projections in each round of measurements. Obviously, this
procedure translates to a steeper drop in RRU values compared to raster scanning.

In a single-detector scanner, zero uncertainty and reconstruction error can be achieved in the
absence of noise and only if the number of sources is more than or equal to the number of voxels.
Obviously, these are not realistic conditions and, as shown in Fig. 3, RRU curves do not cross
zero. Nonetheless, intuitively, we expect the final value of RRU, achieved by raster scanning, to
be similar to or better than what is ultimately obtained by optimal patterns since any possible
illumination pattern is a linear combination of patterns generated in raster scanning. However,
as it is shown in Fig. 3, in the presence of measurement noise, optimal illumination algorithm
leads to a smaller final RRU value. Note that the covariance matrix update Eq. (12) consists of
two parts. The first part is the impact of current measurement and the second part is the effect
of the noise covariance matrix. As mentioned before, when there is no constraint on source
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intensities, Kn and Wn are along the largest principal component of the state vector. As a result,
the term Kn ¯̄R(Kn)T in Eq. (12) is the noise uncertainty projected on the direction of current
measurement. If this noise component is larger than the next largest principal component of the
data, the same measurement is repeated to reduce the effect of noise. This is an important fact
that is not considered in other scanning methods such as raster scanning. This denoising effect,
as displayed in Fig. 3, improves the performance of the optimal illumination algorithm compared
to raster scanning both in the scanning speed and the ultimate RRU value.

To better understand this effect, consider a simple 2D single-detector scanner with only
two sources and two pixels, Fig. 4. Here, η̄ is a 2D vector and we have only two principal
components. Practical limitations on source intensities set a feasible range for synthesizable
measurement vectors. Therefore, in this case, the algorithm designs a measurement vector that is
as close as possible to the main principal component. When the noise power in the direction of
current measurement is larger than the uncertainty along the second principal component of the
state-vector, the optimal measurement vector is positioned along the direction which compromises
between the noise component and the second principal component of the covariance matrix to
reduce the RRU as much as possible, Fig. 4.

Fig. 4. Effect of noise power on optimal illumination design: (right) structure of a 2D
scanner used for the demonstration, (left) the algorithm starts by choosing the first optimal
weight vector, W̄∗

1 , as close as possible to the first principal component. Since noise power is
larger than the uncertainty along the second principal component, the second optimal weight
vector, W̄∗

2 , chosen by the algorithm is close to the first measurement. In other words, power
and distribution of noise suggest that repeating the measurement along the first principal
component helps reduce uncertainty more than making the second measurement along the
second principal component. This effect leads to superior performance, particularly when
noise power is comparable to residual uncertainty along some directions. σp1 and σp2 are
the variances along the first and second principal components, respectively. Noise variance,
σn1 is uniform in all directions.

In the next test, we included both state-dependent and Gaussian noise in simulations of the
same circular 2D scanner. For comparison, we considered four different scenarios in which
collected data in all were contaminated by both sources of noise. In simulations, we first
reconstructed the image by using optimal illumination algorithm that incorporates or ignores the
effect of state-dependent noise. Next, we ran simulations assuming that data is produced via raster
scanning and we used the Kalman filter algorithm to update the estimation once incorporating
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and then ignoring the effect of state-dependent noise in the reconstruction procedure. Figure 5
displays graphs of final RRU values as a function of SDNG, as described in section 3.4 Eq. (25),
for all four different scenarios. Curves in this figure show that the optimal illumination algorithm
that incorporates the effect of state-dependent noise outperforms others. Nonetheless, even
raster scanning, when the effect of state-dependent noise is taken into account, functions better.
Existence of state-dependent noise is a realistic assumption for most detection systems, and as
graphs show, considering the effect in scanning and image reconstruction can lead to noticeable
improvements.

Fig. 5. Effect of state-dependent noise on final RRU values plotted as a function of SDNG
for four different data acquisition scenarios. Data shows optimal illumination protocol, when
state-dependent noise is included in the model, outperforms other algorithms.

According to our discussion on the resolution, both prior information and data acquisition
capability of the scanner (determined by the geometry of the scanner and the relative position of
sources, detectors, and voxels) have a significant impact on achievable resolution. To demonstrate
these effects, we simulated an 8cm3 cubical scanner with the geometry shown in Fig. 6(a). Two
spherical objects with Gaussian spatial distribution (σ = 0.05) and 0.5cm apart center-to-center
were positioned in the middle of the phantom. As stated in section 3.3, to measure resolution, we
assume that we perform raster scanning which covers the maximum capability of the scanner. The
number of sources multiplied by the number of detectors (S×D) was increased gradually and RRU
values were computed for three different prior information and several different voxel numbers.
To investigate the effect of prior information, three different initial covariance matrices (poor,
good, and excellent) were generated for each number of voxels. For this purpose, we considered
the three parameters pmiddle, σr, and σm for the initial estimations. pmiddle is the probability of
objects being in the middle one-eighth of the cube, σr is the variance of the spherical distribution,
and σm is the variance of distribution magnitude. Each of these parameters can get three different
values for poor, good, and excellent prior information, according to Table 1. Next, for each
category, 1000 random spatial distributions were generated and then covariance matrix and state
vector were initialized. To quantify the quality of prior information, we define Normalized Initial
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Trace (NIT) as the trace of the initial covariance matrix relative to the worst initial trace value
(poor). Three separate curve sets in Fig. 6(b) show that for given prior information, the number
of voxels that can be reconstructed at a specific certainty level is directly proportional to the
number of sources multiplied by the number of detectors (S × D). Meanwhile, if we start with
more certain prior information, we can achieve better resolution for a fixed S × D value. For
instance, based on this data, maximum number of voxels to be reconstructed at 90% certainty
is 512 for S × D = 114 with excellent prior information. On the other hand, with poor prior
information, we need about S × D = 210 to achieve the same resolution.

Fig. 6. Analysis of main factors impacting resolution in the statistical framework: (a)
geometry of the cubical scanner, (b) relationship between the quality of prior information,
number of sources-detectors, and achievable resolution.

Table 1. Characteristics of three different prior
estimations

Prior information quality pmiddle σr σm NIT

Poor 0.2 0.1 4.1 1

Good 0.5 0.08 2.1 0.25

Excellent 0.8 0.06 0.9 0.05

To better display the effect of prior information on resolution, we performed the simulation with
64 sources and 12 detectors mounted on opposing walls of the cubic scanner while performing
raster scanning. The medium inside the scanner was spanned to 12 × 12 × 12 voxels. We
simulated the tomography process once by starting with no prior estimation and then we repeated
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with much less uncertainty in our prior information close to the actual state. Figure 7 shows
the result of these reconstructions. As displayed, having proper prior information significantly
enhances the resolution of reconstructed images for a fixed S × D and two spheres are readily
identified as distinct objects.

Fig. 7. Reconstruction of two spherical objects: (a) no prior information, (b) poor prior
information about the location/distribution of targets, (c) adequate prior information, quality
and resolution are significantly improved.

In the next part, a simple experiment was designed to show the effect of source locations
on the amount of information acquired from each measurement using an optimal illumination
pattern. A 2D circular scanner with a single source and single detector was designed. We
assumed that the location of detector is fixed at 0◦, and the medium under the test was discretized
to 10 pixels for illustration the concept. We let pixels with more uncertainties be located in a
specific region of the scanning area (dark pixels in Fig. 8(a)) to highlight the effect of source
location on the scanner’s capability. Two different schemes were examined. First, a single source
could freely move all around the scanner while illuminating the optimal power. RRU value was
calculated at each angle to see which angular location reduces uncertainty the most. Four rounds
of measurement were performed while in each round, the estimation was updated using the best
source location. In the second test, we assumed that the single source could only be placed in a
predefined location in each round of measurements; i.e., location of the single source is at 0◦ in
the first measurement and it rotates 90◦ counter-clockwise in each next round. Results in Fig. 8(a)
show that RRU value significantly changes as the source moves around the scanner. It is also
shown that there is always an optimum location in every measurement that can gather the most
amount of information and reduce uncertainty as much as possible, Fig. 8(b).

To assess the performance of the illumination distribution optimization method, discussed in
section 3.2, We ran simulations using the same 2D scanner. Here, another freely rotating source
was added to the scanner geometry. The two light sources could freely change their locations at
72 different angles around the circle. RRU values were computed for every two combinations
of 72 source locations, and a color map was generated with each source location on one axis.
Gurobi optimizer [30] was then used to solve the optimization problem (20) and select the best

pair of source locations among the ⎛⎜⎝
72

2
⎞⎟⎠ existing options. Results illustrated in Fig. 8(c) show

that the proposed method is perfectly capable of finding optimal source locations that minimize
RRU the most.

Ultimately, to evaluate the performance of a multi-detector scanner, we conducted simulations
using an inhomogeneous digital mouse phantom [31]. Two spherical fluorescence targets, with
an approximate radius of 0.8mm and Gaussian distributions, were placed inside the mouse brain.
Optical properties of the tissue were adjusted to the values given in Table 2. The mouse head was
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Fig. 8. Effect of source location on acquired information: (a) First, a source rotates around
the scanner and RRU is computed at each location. Rings show color-coded values of RRU
for each angular position. Red rectangles show locations where RRU is minimum. Next,
RRU was computed for fixed predefined locations (black). (b) Quantitative analysis of
experiment of panel (a). Selecting optimal location results in a considerable decrease in
RRU, (c) Color map of RRU computed for every two combinations of 72 source locations.
The red marker indicates the optimal location.

tessellated into 3375 voxels. 36 sources and 30 detectors were placed on the surface of the head
as shown in Fig. 9(a). Panel (b) in this figure shows the cross-section of the phantom and the
distribution of targets at the depth of z = 12mm. Optimal illumination pattern was obtained for
each measurement using PGD algorithm with an adaptive step size and the estimation was updated
after each observation. The adaptive method starts from 0.002 and chooses a different step size
at each iteration based on the difference between the trace of covariance matrix in the last two
consecutive iterations. Raster scanning was also performed for comparison. Figure 9(c) shows the
evolution of reconstructed cross-sections at the same depth for both optimal illumination pattern
and raster scanning for different number of measurements. Results show clearly that the optimal
illumination algorithm outperforms raster scanning. The two targets could be identified after
making 18 measurements using optimal patterns, while raster scanning required 36 measurements
to reconstruct images of fluorescence objects with comparable clarity. Although optimization
of illumination pattern for each measurement requires large computation power, advances in
technologies such as super computers significantly reduce computation time. Therefore, using our
online reconstruction method, reducing the number of measurements decreases reconstruction
time as well. For instance, if the number of measurements is reduced by half compared to raster
scanning, the reconstruction time is also cut in half.

In raster scanning, sources are turned on one after another without any policy about how
more information can be acquired. It is shown that sometimes random scanning may lead to
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Fig. 9. (a) Digital mouse phantom simulation setup. (b) Cross-section of digital mouse
phantom at z = 12mm. (c) effect of prior information on reconstruction error in three
different scanning protocols. (d) Cross-sections of fluorescence targets reconstructed via
raster scanning (top row), random scanning (middle row), and optimal pattern method
(bottom row) shown for different number of measurements. The proposed method is able to
reconstruct while taking less number of measurements.

Table 2. Optical properties of digital
mouse phantom

Tissue Type Brain Skull Skin

µ
′

s(cm−1) 12.5 10.0 8.0

µa(cm−1) 0.178 0.101 0.159
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better performance (compared to raster scanning). The simplest practical random scanning
pattern would be randomly turning on single sources which at least ensures the exploration of
perpendicular directions. In our experiment, shown in Fig. 9(d), random scanning outperforms
simple raster scanning. However, the proposed optimal scanning protocol shows superior
performance. It is worth noting that because of the non-convex nature of the multi-detector
problem and inefficiency of current methods in finding global optimum, there may be other
patterns such as random patterns that have better partial performance.

Finally, we performed a quantitative analysis on the reconstructed images for the three
examined scanning protocols. Clearly, quality of prior information has a profound impact on the
performance of the proposed optimum scanning protocol. This effect can be seen in the final
reconstruction error. To examine this effect, several prior estimations with different qualities
were considered, and the reconstruction error was calculated in each case. To quantify the quality
of prior information, we calculated Normalized Initial Trace (NIT) as the trace of the initial
covariance matrix relative to the worst initial trace value. As it is shown in Fig. 9(c), unreliable
prior information not only may lead to improper illumination patterns, but also results in larger
bias in the final reconstructed image compared to other two scanning protocols.

5. Conclusion

Scanning the sample under test is the first essential step in tomography and potentially the most
time-consuming part of the process. During scanning, the sample receives multiple dosages
of exposure which could be harmful in some forms of tomography such as X-ray imaging or
when radioactive materials are exploited. The article concentrates on formulating a systematic
approach to take advantage of the available computational power and optimize the scanning
process via minimizing the necessary number of measurements to achieve acceptable image
quality. Developed algorithms also open the door for optimizing the geometry of the scanner or
the location of sources/detectors to obtain superior performance. We incorporated determining
factors such as state-independent and -dependent measurement noise and prior information about
the sample in our formulations. At this stage, the method is developed for static samples which
are not evolving during the scanning process or speed of changes are negligible compared to
the optimal scanning speed. Nonetheless, the proposed method has the potential to expand to
dynamically evolving samples where scanner keeps changing its configuration and illumination
patterns based on online computations to maximize the amount of acquired information in
each step. The proposed method can be utilized to optimize the data acquisition process in
any experimental study including different tomography modalities such as electrical impedance
tomography, thermo-acoustic tomography, etc. Whenever a model of the system is obtained
based on our knowledge of the underlying physics, this method can improve the efficiency of
measurements and the overall performance of the system. In our simulations, we only investigated
the reconstruction of reduced scattering coefficient from the data. To obtain simultaneous
reconstructions of scattering and absorption coefficients, intensity measurements alone are proven
to be insufficient and data from frequency or time domain are needed.

Currently, the main limitation of our method is that it requires high computational power
to search for the optimal patterns. For instance, increasing the number of voxels results in a
large covariance matrix that makes it extremely challenging to find the optimum pattern with the
present computation power. The good news is with growing advances in optimization methods
and computational power, such as cloud computing and super computers, finding the optimal
solution to such nonlinear problems will be more trivial in the near future.
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